Candida antarctica lipase B chemically immobilized on epoxy-activated micro- and nanobeads: catalysts for polyester synthesis.

نویسندگان

  • Bo Chen
  • Jun Hu
  • Elizabeth M Miller
  • Wenchun Xie
  • Minmin Cai
  • Richard A Gross
چکیده

Candida antarctica Lipase B (CALB) was covalently immobilized onto epoxy-activated macroporous poly(methyl methacrylate) Amberzyme beads (235 microm particle size, 220 A pore size) and nanoparticles (nanoPSG, diameter 68 nm) with a poly(glycidyl methacrylate) outer region. Amberzyme beads allowed CALB loading up to 0.16 g of enzyme per gram of support. IR microspectroscopy generated images of Amberzyme-CALB beads showed CALB is localized within a 50 microm thick loading front. IR microspectroscopy images, recorded prior to and after treatment of Amberzyme-CALB with DMSO/aqueous Triton X-100, are similar, confirming that CALB is largely chemically linked to Amberzyme. The activity of CALB immobilized on Amberzyme, Lewatit (i.e., Novozym 435 catalyst), and nanoPSG was assessed for lactone ring-opening and step-condensation polymerizations. For example, the percent conversion of -caprolactone using the same amount of enzyme catalyzed by Amberzym-CALB, Novozym 435, and nanoPSG-CALB for 20 min was 7.0, 16, and 65%, respectively. Differences in CALB reactivity were discussed based on resin physical parameters and availability of active sites determined by active site titrations. Regardless of the matrix used and chemical versus physical immobilization, -CL ring-opening polymerizations occur by a chain growth mechanism without chain termination. To test Amberzyme-CALB stability, the catalyst was reused over three reaction cycles for -CL ring-opening polymerization (70 degrees C, 70 min reactions) and glycerol/1,8-octanediol/adipic acid polycondensation reactions (90 degrees C, 64 h). Amberzyme-CALB was found to have far better stability for reuse relative to Novozym 435 for the polycondensation reaction.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nanoclays for Lipase Immobilization: Biocatalyst Characterization and Activity in Polyester Synthesis

The immobilization of Candida antarctica lipase B (CALB) was performed by physical adsorption on both neat and organo-modified forms of sepiolite and montmorillonite. The influence of different parameters, e.g., solvent, enzyme loading, cross-linking, and type of clay support, on immobilization efficiency and catalyst hydrolytic activity has been investigated. The highest hydrolytic activities ...

متن کامل

Intermediate Production of Mono- and Diolein by an Immobilized Lipase from Candida antarctica

Lipase from Candida antarctica, fixed on macroporous acrylic resin, has been used for the intermediate production of mono- and diolein by hydrolysis of triolein. The effect of altering concentrations of triolein and glycerol and the function of the molecular sieve on the hydrolysis reaction of triolein were investigated. The highest hydrolysis yield was observed for the utmost concentration of ...

متن کامل

Design of Heterogeneous Hoveyda-Grubbs Second-Generation Catalyst-Lipase Conjugates.

Heterogeneous catalysts have been synthesi zed by the conjugation of Hoveyda-Grubbs second-generation catalyst with a lipase. The catalytic properties of the organometallic compound in solution were firstly optimized, evaluating the activity of Ru in the ring-closing metathesis of diethyldiallymalonate at 25 °C at different solvents and in the presence of different additives. The best result wa...

متن کامل

Investigation of Enzyme Immobilization Effects on its Characteristics

Background; Enzymes are well known as sensitive catalysts in the laboratory and industrial scale. To improve their properties and for using their significant potential in various reactions as a useful catalyst the stability of enzymes can often require improvement. Enzymes Immobilization on solid supports such as epoxy- functionalized ferric silica nanocomposite can be effective way to improve ...

متن کامل

Effect of Candida antarctica lipase B immobilization on the porous structure of the carrier.

A series of poly(GMA-co-EGDMA) resins with identical composition but varying particle sizes, pore radii, specific surface areas and specific volumes are studied to assess how Candida antarctica lipase B immobilization affects the porosity of the copolymer particles. Mercury porosimetry reveals a significant change in the average pore size (up to 6.1-fold), the specific surface area (up to 3.2-f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biomacromolecules

دوره 9 2  شماره 

صفحات  -

تاریخ انتشار 2008